Ученые научились охлаждать атомы, это позволит познать Вселенную

Квантовая физика любит холод. В частности, макроскопические квантовые явления, вроде сверхпроводимости, сверхтекучести и конденсата Бозе-Эйнштейна встречаются только при достаточно низких температурах. В настоящее время методы охлаждения могут достигать температуры в несколько нанокельвинов, достижение еще более низких температур на Земле связано с определенными трудностями из-за необходимости охлаждать материю под действием земного притяжения. Лаборатория охлаждения атомов NASA появится на МКС в 2016 году, что позволит создать температуру примерно в три раза меньше самой низкой из всех, воссозданных доселе.

 

Пролить свет на природу квантовой материи (формы материи, в которых макроскопические свойства продиктованы квантовой механикой) — это одна из основных тем за последние полвека в физике, которая собрала девять Нобелевских премий. Примеры: сверхпроводимость, сверхтекучесть, дробный квантовый эффект Холла и конденсаты Бозе-Эйнштейна.

Предположительно новые и неожиданные квантовые эффекты должны быть открыты при более холодных температурах. В частности, эксперименты на спокойном фоне должны предоставить данные о крошечных эффектах, не омраченных тепловым шумом. Ключи к природе пространства и времени, квантовой запутанности, принципу эквивалентности и другим вопросам могут быть скрыты именно в холоде.

Диапазон новых применений достаточно широк, к примеру, потенциальные квантовые датчики на основе атомной интерферометрии длины волны, в которых волновая природа атомов настолько усилена низкими температурами, что они интерферируют между собой.

Как понимать холодную температуру? По температурной шкале Кельвина, нулевая температура — это абсолютный ноль, при котором все классическое движение останавливается. Изменение температуры связывается с одним градусом Кельвина, который равен одному градусу Цельсия.

На пути к сверххолодным температурам есть свои маркеры. У сухого льда температура 195 К, жидкий азот кипит при 77 К, а гелий становится жидким при 4,2 К. Реликтовый микроволновый фон Вселенной отвечает 2,725 К, а в самом холодном месте, известном во Вселенной, в туманности Бумеранга температура в 1 К.

Маркеры хороши, но материя при температуре в 1 пикокельвин в триллион раз холоднее, чем туманность Бумеранга. Огромный скачок, который позволяет ощутить по-настоящему сильный мороз. Как вариант — можно взглянуть на длину волны де Бройля (в примерном квантовом размере) атомы в холодном газе.

При комнатной температуре атом среднего веса имеет длину волны около 0,02 нм, что примерно в 10 раз меньше, чем физический размер атома. Расхождение в размерах объясняет, почему атомные газы вообще не демонстрируют квантовую природу при комнатных температурах. При температуре в 1 К длина волны около 0,3 нм, куда больше, чем разделение атомов в жидкости, и можно наблюдать квантово-механический сверхтекучий гелий, который появляется примерно при такой температуре.

При пикокельвине длина волны составляет примерно 0,3 мм, размером со среднюю песчинку, и значительно больше классического размера атома. Когда квантовые волны отдельных атомов в газе накладываются друг на друга, в системе начинают доминировать квантовые эффекты; в случае атомного газа из бозонов, вы получите конденсат Бозе-Эйнштейна.

Источник: hi-news.ru

Залишити відповідь